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Abstract: This paper presents a numerical method for solving fractional differential equations in the Riemann-
Liouville sense. The approach is based on the Eulers method. The main characteristic behind the approach is that
Euler method has intuitive geometric meaning. The algorithm is presented and the convergence of the algorithm is
proved. As applications of main results, three specific numerical examples are given.
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1 Introduction

With the rapid development of high-tech, the frac-
tional calculus gets involved in more and more ar-
eas, especially in control theoryviscoelastic theory-
electronic chemicalsfractal theory and so on. See ref-
erence [1]-[5]. The Existence and uniqueness for frac-
tional differential equations has been investigated by
many authors (see, e.g., [6]-[8]). Finding accurate and
efficient methods for solving FDEs has been an ac-
tive research undertaking. In the past few decades,
many methods have been developed for solving FDEs
from the numerical point of view, such as the Leg-
endre wavelet method, the spectral method and quar-
tered shifted Legendre method based on GaussCLa-
batt. See reference [9]-[11]. Eulers method has been
proven to be efficient solving ordinary differential
equations (ODEs) and other kinds of equations. See
reference [12, 13]. A question arise naturally: can
we have Euler method to derive numerical solution
of FDEs? This paper is concerned with the numeri-
cal solution of following initial value problem of FDE
Dα

a+ = f(x, y) Where 0 < α < 1 and fractional
derivative is in Riemann-Liouville sense. In this pa-
per, we give the Euler method for the fractional differ-
ential equations.

This paper is organized as follows. In section
2 we introduce some definitions and some relevant
properties of Riemann-Liouville derivative and Ca-
puto derivative. In section 3 we present the proof
of convergence of the algorithm and error analysis of
the algorithm. In section 4 improved algorithms are
given. In section 5 we give three specific numerical
examples equipped with comparing figure of numeri-
cal solution and analytical solution. Finally we con-

clude the paper with some remarks.

2 Preliminaries
There are a great number of definitions of fractional
integration and fractional derivative (see, [14]-[17]).
We will only present Riemann-Liouville and Caputo.

Let f : [a, b] → R be a function, α is a positive
real number satisfying n − 1 ≤ α < n, and Γ the
Euler gamma function.

Definition 1 The left and right Riemann-Liouville
fractional integration of order α is defined by

Iαa+f(x) =
1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt

and

Iαb−f(x) =
1

Γ(α)

∫ b

x
(t− x)α−1f(t)dt

Definition 2 The left and right Riemann-Liouville
fractional derivative of order α is defined by

Dα
a+f(x) =

1

Γ(n− α)
dn

dxn

∫ x

a
(x− t)n−α−1f(t)dt

and

Dα
b−f(x) =

(−1)n

Γ(n− α)
dn

dxn

∫ b

x
(t− x)n−α−1f(t)dt

Definition 3 The left and right Caputo fractional
derivative of order α is defined by

CDα
a+f(x) =

1

Γ(n− α)

∫ x

a
(x− t)n−α−1f (n)(t)dt
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and

CDα
b−f(x)

=
1

Γ(n− α)

∫ b

x
(−1)n(t− x)n−α−1f (n)(t)dt

There exists a relation between the Riemann-
Liouville fractional derivative and Caputo fractional
derivative.

CDα
a+f(x) =

Dα
a+f(x)−

n−1∑
k=0

f (k)(a)

Γ(k−α+1)
(x−a)k−α (1)

Lemma 4 [18] Let α ≥ 0, β ≥ 0, and φ ∈ L1[a, b],
then

Iαa+I
β
a+φ = Iα+β

a+ φ

holds almost everywhere on [a, b]. If φ ∈ C[a, b] or
α+ β ≥ 1, the identity holds everywhere on [a, b].

Lemma 5 [18] Let α ≥ 0, β ≥ 0, φ ∈ L1[a, b], and
f = Iα+β

a+ φ, then

Dα
a+D

β
a+f = Dα+β

a+ f.

3 Eulers method to fractional differ-
ential equations and error analysis

This paper is concerned with the numerical solution
of following initial value problem of FDE

Dα
a+y = f(x, y) (2)

y(a) = y0 (3)

The fractional derivative is in Riemann-Liouville
sense with the order 0 < α < 1. By using the proper-
ties of fractional integration and fractional derivative,
we can do analogously transformation as this paper. If
we apply Riemann-Liouville fractional derivative of
1− α order on (2), we get the following equation

y′ = D1−α
a+ f(x, y) (4)

According to Euler’s method, we get the following al-
gorithm:

xn+1 = x0 + nh

h = H
n

yn+1 − yn = hD1−α
a+ f(x, yn)|x=xn

(5)

With the Matlab software, the algorithm can be
achieved in computer. And the algorithm is proved
to be efficient and convergent. Before the proof, we
will give some relevant definitions and Lemma.

Definition 6 [19] Let f1(x), f2(x), · · · fn(x), · · · be
sequence of functions on interval I . It is called uni-
formly bounded if there exists a constant K > 0 such
that |fn(x)| ≤ K to all x ∈ I and n ∈ N+.

Definition 7 [19] Let f1(x), f2(x), · · · , fn(x), · · ·
be sequence of functions on interval I . It is called
equicontinuous if arbitrary ε there exists δ such that
for arbitrary x1, x2 ∈ I such that when |x1−x2| < δ,
|fn(x1)− fn(x2)| < ε holds for all n.

Lemma 8 [19] Let f1(x), f2(x), · · · , fn(x), · · · be
sequence of functions on finite closed interval I . If
it is uniformly bounded and equicontinuous, there is a
subsequence which is uniformly continuous.

Lemma 9 [20] Function y has continuous left frac-
tional derivative, then it is necessarily that y(a) = 0

Theorem 10 Let the function f(x, y) satisfies condi-
tions that f(x0, y(x0)) = 0 and fx(x, y) is continu-
ous on R :

0 ≤ x− x0 ≤ c, |y − y0| ≤ b

then the FDEs (2)–(3) have at least one solution at the
interval 0 ≤ x − x0 ≤ H with H = min{c, b

M } and
M > max

(x,y)∈R
D1−α

a+ f(x, y).

Proof: Divide the interval 0 ≤ x − x0 ≤ H into n
equal parts. We can get n+ 1 points:

xk = x0 +
kH

n
, k = 0, 1, 2 · · ·n.

From the initial point P0(x0, y0), we denote intersec-
tion point of the direction of P0(x0, y0) and vertical
line x = x1 as P1(x1, y1), line segment [P0, P1] as
the first Euler line. Successively we get the Euler line
γn. For any x satisfying 0 ≤ x−x0 ≤ H , there exists
an integer 0 ≤ s ≤ n − 1 such that xs < x ≤ xs+1.
For each n ∈ N, let {φn(x)} denote the sequence:

φn(x) = y0 +

s−1∑
k=0

D1−α
a+ f(x, yk)|x=xk

(xk+1 − xk)

+D1−α
a+ f(x, ys)|x=xs(x− xs)

(6)

Since |y − y0| ≤ b, we have |φn(x) − y0| ≤ b,
which implies {φn(x)} is uniformly bounded. Due
to f(x0, y(x0)) = 0 and equation (1), the Riemann-
Liouville fractional derivatives is equal to the Caputo
fractional derivative, i.e.,

D1−α
a+ f(x, y) =

1

Γ(α)

x∫
a

(x− t)α−1 d

dt
f(t, y)dt

(7)
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By continuity of fx(x, y) and equation (7), the
term D1−α

a+ f(x, y) is continuous, and D1−α
a+ f(x, y) is

bounded. So we have

|φn(s)− φn(t)| ≤M(x− t)

Namely, {φn(x)} is equicontinuous. According As-
coli Lemma, we can choose a subsequence of Eulers
function which is uniformly convergent at the interval
0 ≤ x − x0 ≤ H . Denote the chosen subsequence:
φn1 , φn2 , · · · , φnk

, · · · .

Let F (x, y) = D1−α
a+ f(x, y). We shall prove

φn(x) = y0 +

∫ x

x0

F (x, φn(x))dx+ δn(x)

and δn(x)→ 0. Noticing that

F (xi, yi)(xi+1 − xi) =
∫ xi+1

xi

F (xi, yi)dx

we have

F (xi, yi)(xi+1−xi) =
∫ xi+1

xi

F (x, φn(x)))dx+dn(i)

where

dn(i) =

∫ xi+1

xi

[F (xi, yi)− F (x, φn(x))]dx

for i = 0, 1, · · · , s− 1.
For xs < x ≤ xs+1, we have

F (xs, ys)(x− xs) =
∫ x

xs

F (x, φn(x)))dx+ d∗n(x)

and

d∗n(x) =

∫ x

xs

[F (xs, ys)− F (x, ϕn(x)]dx.

Thus the identity (6) is equivalent to

φn(x) = y0 +

∫ x

x0

F (x, φn(x))dx+ δn(x)

where

δn(x) =
s−1∑
i=0

dn(i) + d∗n(x)

According to the structure of Euler’s method, we have
|x− xi| ≤ H

n and

|ϕn(x)− yi| ≤
MH

n

for xi < x ≤ xi+1. Since D1−α
a+ f(x, y) is continuous,

for arbitrary ε, there exists N such that for arbitrary
xi < x ≤ xi+1,

|F (xi, yi)− F (x, φn(x))| <
ε

H
.

Therefore,

dn(i) ≤
∫ xi+1

xi

|F (xi, yi)− F (x, ϕn(x)|dx <
ε

n
.

And for n > N , xs < x ≤ xs+1, we have |δ∗n(x)| <
ε
n . So when n > N , |δn(x)| < sε

n + ε
n ≤ ε, namely,

δn(x)→ 0. Thus

φnk
(x) = y0 +

∫ x

x0

F (x, φnk
(x))dx+ δnk

(x)

Since the subsequence is uniformly convergent and
δn(x)→ 0, let ϕ(x) be the limit of {φnk

(x)}, then

ϕ(x) = y0 +

∫ x

x0

F (x, ϕ(x))dx

for 0 ≤ x− x0 ≤ H . Hence the FDEs (2)–(3) have at
least one solution on [x0, x0 +H]. �

Remark 11 In addition, if fx(x, y) satisfies Lipschitz
condition

|fx(x, y1)− fx(x, y2)| ≤ L|y1 − y2|,

Then the solution of FDEs (2)-(3) is unique.

Lemma 12 If fx(x, y) satisfies Lipschitz condition

|fx(x, y1)− fx(x, y2)| ≤ L|y1 − y2|

and conditions in Theorem 10 , then F (x, y) =
D1−α

a+ f(x, y) also satisfies Lipschitz condition for y.

Proof: Noting that

|F (x, y1)− F (x, y2)|

=
1

Γ(α)
|
∫ x

a
(x− t)α−1(fx(x, y1)− fx(x, y2))dt|

≤ L

Γ(α)
|y1 − y2||

∫ x

a
(x− t)α−1dt|

=
L|(x− a)α|
αΓ(α)

|y1 − y2|,

for 0 ≤ x − x0 ≤ c, there exists d which satisfies
|(x− a)α| ≤ d. Hence

|F (x, y1)− F (x, y2)| ≤M |y1 − y2|

where M = Ld
αΓ(α) . �
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Theorem 13 If fx(x, y) satisfies Lipschitz condition

|fx(x, y1)− fx(x, y2)| ≤ L|y1 − y2|

Then y(xn)− yn = O(h).

Proof: The Euler iteration formula is based on yn =
y(xn), Then we can get

ȳn+1 = y(xn) + hD1−α
a+ f(x, yn)|x=xn (8)

So we can easily get

y(xn+1)− ȳn+1 =
h2

2
y
′′
(ξ)

Namely, |y(xn+1)− y⃗n+1| ≤ ch2.
According to equation (8) and Euler’s iteration

formula, we get

|ȳn+1 − yn+1|

≤ |y(xn)− yn|

+ h|(D1−α
a f(xn, y(xn))−D1−α

a f(xn, yn)|

≤ (1 + hM)|y(xn)− yn|.

Hence,

|y(xn+1)− yn+1|

≤ |y(xn+1)− ȳn+1|+ |ȳn+1 − yn+1|

≤ (1 + hM)|y(xn)− yn|+ ch2.

Therefore, we have estimate

|en+1| ≤ (1 + hM)|y(xn)− yn|+ ch2.

From above we can get the recursion formula

|en| ≤ (1 + hM)n|e0|+
ch

M
[(1 + hM)n − 1].

Since xn − x0 = nh ≤ H ,

(1 + hL)n| ≤ (ehL)n ≤ eHL = g

At the same time we have e = 0. Consequently |en| ≤
ch
M (g − 1), namely, y(xn)− yn = O(h). �

Remark 14 Theorem 13 indicates the Euler’s method
effective with first-order error.

4 Improved Eulers method
A question arises naturally: can we improve the ac-
curacy of the algorithm? Firstly, we recall backward
Euler method. It is as follows:

yn+1 − yn = hD1−α
a+ f(x, yn+1)|x=xn+1 .

It is obvious that the backward Euler’s algorithm
is implicit. Euler’s method and backward Euler’s
method have their own characteristics. Euler’s method
is much more convenient. But taking the numeri-
cal stability factors into account, backward Euler’s
method is often chosen. Backward Euler’s equations
are usually solved by iteration. And the essence of the
iterative process is gradually explicit. The specific is:

y
(0)
n+1 − yn = h×D1−α

a+ f(x, yn)|x=xn+1

y
(k+1)
n+1 − yn = h×D1−α

a+ f(x, y
(k)
n+1)|x=xn+1

k = 0, 1, 2, · · ·

By calculation, we can get local truncation error of the
two methods

y(xn+1)− yn+1 =
h2

2
y
′′
(ξ)

and

y(xn+1)− yn+1 = −
h2

2
y
′′
(ξ)

It is easy to see that we can get higher accuracy
method by the average of the two methods.

By the average of the two methods, we get im-
plicit trapezoidal method

yn+1 − yn

=
h

2
×D1−α

a+ f(x, yn)|x=xn +D1−α
a+ f(x, yn)|x=xn+1

which can be solved by iteration formula?

y
(0)
n+1 − yn = hD1−α

a+ f(x, yn)|x=xn+1

y
(k+1)
n+1 − yn =

h

2
D1−α

a+ f(x, y
(k)
n+1)|x=xn+1

+D1−α
a+ f(x, yn)|x=xn

Although the trapezoidal method improves the accu-
racy, the algorithm is complex. In iterative formula, it-
eration operation is repeated several times which leads
great amount of computation and difficultly to pre-
dict the results. In order to decrease the amount of
computation, we hope the algorithm transferred to the
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next step calculation after only once or twice iteration
operation. Therefore, we propose improved Euler’s
method

xn+1 = x0 + nh

yp − yn = hD1−α
a+ f(x, yn)|x=xn

yc − yn = hD1−α
a+ f(x, yp)|x=xn+1

yn+1 =
1
2(yp + yc)

Next we prove the Euler method is effective with first-
order error.

Theorem 15 If fx(x, y) satisfies Lipschitz condition

|fx(x, y1)− fx(x, y2)| ≤ L|y1 − y2|

We can get y(xn)− yn = O(h2) for improved Euler’s
method.

Proof: Let Euler iteration formula be based on yn =
y(xn). We can get

ȳn+1 = y(xn) +
h

2
D1−α

a+ f(x, yn)

+
h

2
D1−α

a+ f(x, yn + hD1−α
a+ f(x, yn)|x=xn)|x=xn+1

(9)
Set F (x, y) = D1−α

a+ f(x, y). We can get

F (xn+1, yn + hy′(xn)) = F (xn+1, y(xn+1))

+ Fy(xn+1, ξ)(yn + hy′(xn)− y(xn+1))
(10)

F (xn+1, y(xn+1)) =

y′(xn) + hy′′(xn) +
h2

2
y′′′(xn) +

h3

3!
y′′′(xn) + · · ·

(11)

y(xn+1) = y(xn) + hy′(xn) +
h2

2
y′′(xn)

+
h3

3!
y′′(xn) + · · ·

(12)

By (9)-(11), we get

ȳn+1 = y(xn) +
h

2
(y′(xn) + y′(xn) + hy′′(xn)

+
h2

2
y′′′(xn) +

h2

2
Fy(xn+1, ξ)y

′′(xn))

(13)

Combining Eq. (12) and Eq. (13), we get y(xn+1) −
ȳn+1 = O(h3), namely,

|y(xn+1)− ȳn+1| ≤ ch2. (14)

Let

φ =
1

2
(F (x, y) + F (x+ h, y + hF (x, y)).

Then

|φ(x, y, h)− φ(x, ȳ, h)|

≤ 1

2
|F (x, y)− F (x, ȳ)|

+ |F (x+ h, y + hF (x, y))− F (x+ h, ȳ + hF (x, ȳ))

≤M(1 +
h

2
M)|y − ȳ|

≤M(1 +
h0
2
M)|y − ȳ|

≤ Lφ|y − ȳ|

and

|ȳn+1 − yn+1|

≤ |y(xn)− yn|+ |φ(xn, y(xn), h− φ(xn, yn, , h)|

≤ (1 + hLφ)|y(xn)− yn|.

Hence, we have

|y(xn+1)− yn+1|

≤ |y(xn+1)− ȳn+1|+ |ȳn+1 − yn+1|

≤ (1 + hLφ)|y(xn)− yn|+ ch3

Namely,

|en+1| ≤ (1 + hLφ)|en|+ ch3.

Thus we get the recursion formula

|en| ≤ (1 + hLφ)
n|e0|+

ch2

Lφ
[(1 + hLφ)

n − 1]

By xn − x0 = nh ≤ H , then

(1 + hLφ)
n| ≤ (ehLφ)n ≤ eHLφ = gφ.

At the same time we have e0 = 0. Consequently, we
get that |en| ≤ ch2

Lφ
(gφ − 1), namely, y(xn) − yn =

O(h2). �

5 Examples
In this section, with the help of Matlab, we give two
examples to illustrate the convergence of both Euler
method and improved Euler method by comparison
figure of numerical solution under different segmen-
tation and analytical solution.
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Figure 2:

Example 16 Consider the following fractional differ-
ential equation [20]:

D0.5
0+y = x2, 0 ≤ x ≤ 1

y(0) = 0

The analytical solution is

y(x) =
1

Γ(0.5)

16x2.5

15

For each method, we get three sets of numerical solu-
tion when the number of division is n = 20, n = 100
and n = 200 respectively.

Using the Matlab software, we get Fig.1 for Eu-
ler’s method and Fig.2 for improved Euler’s method.
In the both figures, the yellow, blue, red and black
curve are corresponding to numerical solution of n =
20, 100, 200 and the analytical solution respectively.

From the above two figures, we see that the nu-
merical solution is closer to analytical solution as the
number of division increase for the same method; the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3:

numerical solution of improved Euler method is closer
to analytical solution than the numerical solution of
Euler method.

In this example Euler’s method is enough perfect.
In actual use, with improved Euler’s method more sta-
ble and accurate but Euler’s method operation on the
computer is faster; we can choose a more suitable
upon request method.

Example 17 Consider the following fractional differ-
ential equation [21]:

D0.1
0+y = y0.2, 0 ≤ x ≤ 1

y(0) = 0.

The analytical solution is

y(x) = (
Γ(1.125)

Γ(1.025)
)−1.25x0.125.

Using the MATLAB software, we get Fig.3 for
Euler method and Fig.4 for improved Euler method.
The yellow, blue, red and black curve are correspond-
ing to numerical solution of n = 20, 100, 200 and the
analytical solution respectively.

According to the above two figures, the numerical
solution appear larger deviation using Euler’s method
but not made up by improved Euler’s method when
n = 20 at the beginning certain number of points.
This is to say the improved Euler’s method is more
accurate.

Example 18 Consider the following fractional differ-
ential equation:

D0.5
0+y =

5x2

6
+

1

6
(
15Γ(0.5)y

16
)0.8, 0 ≤ x ≤ 1

y(0) = 0
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The analytical solution is

y(x) =
1

Γ(0.5)

16x2.5

15
.

For each method, we get three sets of numeri-
cal solution for the number of division is n = 20,
n = 100 and n = 200 respectively. Using the Matlab
software, we get Fig.5 for Euler method and Fig.6 for
improved Euler method. In the two figure, the yellow,
blue, red and black curve are corresponding to numer-
ical solution of n = 20, 100, 200 and the analytical
solution respectively.

6 Conclusions
In this paper we derive a simple numerical method,
Euler’s method for solving fractional differential
equations in the Riemann-Liouville sense, which has
intuitive geometric meaning. And the numerical so-
lution is closer to analytical solution as the number

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6:

of division increase. In actual use, when more sta-
ble and accurate is needed, we considered improve
the method, which brings improved Euler’s method.
Compared with other algorithms, the algorithms in
this paper are easier to understand and more simple
to be operated on the computer. In this paper we
only consider the fractional derivatives in Riemann-
Liouville sense with the order 0 < α < 1, it can be
generalized to any other order and fractional deriva-
tives in other sense by using the relationship among
various fractional derivatives.
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